Variation in the fruit development gene POINTED TIP regulates protuberance of tomato fruit tip

Song et al.

Supplementary Fig. 1. Phylogenetic tree analysis of PT.

Phylogenetic relationships of PT proteins from Solanum lycopersicum, Arabidopsis thaliana, Oryza sativa, and Vitis vinifera. The full-length amino acid sequences of PT paralogous and orthologous were downloaded from EnsemblPlants and aligned using Clustal W2. The phylogenetic tree was constructed using the neighbor-joining algorithm in MEGA 7. The red ID indicates PT.

Supplementary Fig. 2. Subcellular localization of $\mathbf{P T}^{\mathbf{R}}$ and $\mathbf{P T}^{\mathbf{H}}$ proteins.
Tobacco protoplasts were co-transformed with plasmids that express either PT^{R}-GFP or PT^{H}-GFP and a nuclear marker Ghd7-CFP. Free GFP served as a control. Green and cyan signals indicate fluorescence from GFP and the nuclear marker, respectively. Three independent experiments were performed.

ATGAGTCAGGAGCCTAAAGAGTATAAAATATTAATAAAATTTTTTAAAATCGTATATAAAATTTTATATTAACCAAAATGGTAAAATTGTTGGAACAACAAC ATGAGTCAGGAGCCTAAAGAGTATAAAATATTAATAAAATTTTTAAAATCGTATATAAAATTTTATATTAACCAAAATGGTAAAATTGTTGGAACAACAAC

GATTTCCTCCACCGGAAAAAGCAAAATCGCTGCTAGTGCAGCGATTTTACAAAATGTGATTTTCATTTGAAAAAATTTCAAATCGCTACCTAGGCAG GATTTCCTCCACCGGAAAAAGCAAAATCGCTGCTAGTGCAGCGATTTTACAAAATGTGATTTTCATTTGAAAAAATTTTCAAATCGCTACCTAGGCAG

CAATTTTTCATTTTTTTTTGTTTTTAAAAATGGAAATTGTTGCCTAGATTTTCTAAAAAAAATGAAATTCGCTGCCTAGGTAGCGATTTGAATTTTTTTT CAATTTTTCATTTTTTTTTGTTTTTAAAAATGGAAATTGTTGCCTAGATTTTCTAAAAAAAATGAAATTCGCTGCCTAGGTAGCGATTTGAATTTTTTTT
TAAAAATTATATTTTTGCTTTTTTCAGGTGGAGGAAATCGTTGTTATTCCAGCGATTTTGCCGTTTTTGGTTAATATAAAAATTTATATAACGTTTTGGAATTT TAAAAATTATATTTTGCTTTTTCAGGTGGAGGAAATCGTTGTTATTCCAGCGATTTTGCCGTTTTGGTTAATATAAAATTTATATAACGTTTTGGAATTT
TTGTTAATATTTTTATACCCTTTATGCTCCGAACTCAGTATTATATGTTAAAGACTTATAAAGTATTTCTTTGATGAATAGCAATTAAGTATATGAATATAAAT TTGTTAATATTTTATACCCTTTATGCTCCGAACTCAGTATTATATGTTAAAGACTTATAAAGTATTTCTTTGATGAATAGCAATTAAGTATATGAATATAAAT

TCTGAAAATTAATAATAAATAAATCAAAATACAAAATTATAAAGTGTATAATTCTAAGATCGAACTCTTATTTTTTATTTTGGTAAGATACTTTTCTACCTTA TCTGAAAATTAATAATAAATAAATCAAAATACAAAATTATAAAGTGTATAATTCTAAGATCGAACTCTTATTTTTTATTTTGGTAAGATACTTTTCTACCTTA

GTACATTGATGTTTGCTAGTTTAAGCATTTCATTCTTATCGTACTATATATATTGGTAAGGATAAAATTGCATACACACAATACCTACTCTTTCTAAGAAT GTACATTGATGTTTGCTAGTTTAAGCATTTCATTCTTATCGTACTATATATATTGGTAAGGATAAAATTGCATACACACAATACCTACTCTTTCTAAGAAT

ATACGTATTTTTGTCAGTCGTATGATTATACTCAGTGGTGTAGCCACATGATGTTCAGTGTCCAATTGGATATCCTTTGTCGGAAAAAAAATATTATAA ATACGTATTTTTGTCAGTCGTATGATTATACTCAGTGGTGTAGCCACATGATGTTCAGTGTCCAATTGGATATCCTTTGTCGGAAAAAAAATATTATAA

ATACAAGTTAAATGATACATGAAATGATTTGATAACATATTTTGGATAGTCTTGACACAATAAGTTATTGTAGCCCAGTGTTTTCGCCTCCTTTTAAAGA ATACAAGTTAAATGATACATGAAATGATTTGATAACATATTTTGGATAGTCTTGACACAATAAGTTATTGTAGCCCAGTGTTTTCGCCTCCTTTTAAAGA

AGTGGTGCTTGTATTGTTTGAATTTCACTAGTTTTATTTTTTTGAAAAGAGCTTTTATCGTGCTATTTTTTGAACACTCTTTGTGGAATTCCTTGCTCTGA AGTGGTGCTTGTATTGTTTGAATTTCACTAGTTTTATTTTTTGAAAAGAGCTTTTATCGTGCTATTTTTGAACACTCTTTGTGGAATTCCTTGCTCTGA
CATTGATTGTACTAAATATGTTAGTTTCATACTATATATTGGTAAGAATAAAATTACATACATCTACCCTTTTTACTGGTACACATATTTTGGTCAGTCGTG CATTGATTGTACTAAATATGTTAGTTTCATACTATATATTGGTAAGAATAAAATTACATACATCTACCCTTTTTACTGGTACACATATTTTGGTCAGTCGTG
CCGTTATACTAGATATATAATTGTCGTACTATATATAATGCTAGCTATAAGATTGCATACACTCACTAATTTTACATTTCAATTGTACAATTACACTGAACA CCGTTATACTAGATATATAATTGTCGTACTATATATAATGCTAGCTATAAGATTGCATACACTCACTAATTTTACATTTCAATTGTACAATTACACTGAACA

TATTATTATCGTACTATATATTGTTAAGGATAAAATTGCATACATCTTAGCAAGTCATACGATTATACTGAATACATTATTGTAATACTATACATTGATAGTA TATTATTATCGTACTATATATTGTTAAGGATAAAATTGCATACATCTTAGCAAGTCATACGATTATACTGAATACATTATTGTAATACTATACATTGATAGTA

CTTAAAAGATTGCATACACCTACTATATTCATATTTTTAATTATGCTATTACACTGAGTATATCATTATCAAACTATATATATTGATCAAAATAAAATTACATAG CTTAAAAGATTGCATACACCTACTATATTCATATTTTAATTATGCTATTACACTGAGTATATCATTATCAAACTATATATATTGATCAAAATAAAATTACATAG

ACCTACCCTTTCTAGGGGTACACATATTTCAACCAGTCATTCGATTATACTAAATTTATTATTGTCGTACTATATATTGACAGTTAATTATAAGCTAAGATT ACCTACCCTTTCTAGGGGTACACATATTTCAACCAGTCATTCGATTATACTAAATTTATTATTGTCGTACTATATATTGACAGTTAATTATAAGCTAAGATT

GCATACACCTACTGTTTTCAAATTTCAGTTGTGCAATTACACTGAATATATTACTAACATAGTTGTGTGATTACACTTGCTATATTATTGTAGTACTATATA GCATACACCTACTGTTTTCAAATTTCAGTTGTGCAATTACACTGAATATATTACTAACATAGTTGTGTGATTACACTTGCTATATTATTGTAGTACTATATA TTAGCAAGGATAAAATTGTATACACCTACTGTTTTTCATATTTCAGTTATGCAATTACACTGAACATATTACTACATGATTGTGTGATTACACTTGCTATAT TTAGCAAGGATAAAATTGTATACACCTACTGTTTTCATATTTCAGTTATGCAATTACACTGAACATATTACTACATGATTGTGTGATTACACTTGCTATAT
TATTGTCGTACTATATATTAGCAAGGATAAAAATTGTATACACCTACCCTTTCTAAGGGTACAAATATTTTCAACCAGTCGTATAATTTACAGTAAATATATCA TATTGTCGTACTATATATTAGCAAGGATAAAATTGTATACACCTACCCTTTCTAAGGGTACAAATATTTCAACCAGTCGTATAATTTACAGTAAATATATCA TTATCGTACTACATATATAATTATACTGAATATATTATTATCGTACTATATATATTAGGTTTGTTATTTAACTGGTTCTCCTTATCTATCCATCTATATACAAAA TTATCGTACTACATATATAATTATACTGAATATATTATTATCGTACTATATATATTAGGTTTGTTATTTAACTGGTTCTCCTTATCTATCCATCTATATACAAAA

AGCTAAGAAGCAAAAAACAATATTTCATCATATTGAATATATCTCTTTCTCTCTCTCTCTCTCTCT

Supplementary Fig. 3. Alignment of the PT promoter sequences.

TS-9 is an accession that produces non-pointed tip fruit. LA4053 is an accession that produces fruit with pointed tips.

Supplementary Fig. 4. Expression patterns of PT.

Relative transcript levels of $P T$ in different tissues from pointed tip accessions and non-pointed tip accessions. TS-9, TS-19, and TS-35 produced fruit with non-pointed tips. LA4053, TS-72, and TS-253 developed pointed tip fruit. DPA, day post anthesis; IG, immature green. Error bars indicate mean \pm SE. $n=$ three biological replicates. Source data are provided as a Source Data file.

Supplementary Fig. 5. Longitudinal sections from fruit produced by different transgenic lines and pertinent wild-type plants.
a Fruit from plants harboring the $P T^{R}$ and $P T^{H}$ alleles from the $\mathrm{F} 2: 3$ population. b, c Fruit from $P T^{H}$-overexpressing lines (b: $P T^{H}$-OE-2, $P T^{H}$-OE-3, and $P T^{H}$-OE-5) and its pertinent wild type control (TS-3 $P T^{R}+/+$), (c: $P T^{H}-\mathrm{OE}-5, P T^{H}-\mathrm{OE}-7$, and $P T^{H}-\mathrm{OE}-8$) and the pertinent wild-type line (TS-9 $P T^{H}+/+$). d-f Fruit from CR-pt ${ }^{H}$ mutants (CR-pt $t^{H}-1$, CR-pt $t^{H}-4$, and CR-pt ${ }^{H}-10$) and pertinent wild type control (TS-9) that produces non-pointed tip fruit (d), CR-pt t^{R} mutants (CR-pt $t^{R}-3, \mathrm{CR}-p t^{R}-5$, and CR-pt $t^{R}-6$) and its pertinent wild type control (TS-3) that produces fruit with pointed tips (e), $\mathrm{CR}-p t^{R}$ mutants ($\mathrm{CR}-p t^{R}-1, \mathrm{CR}-p t^{R}-4$, and $\mathrm{CR}-p t^{R}-7$) and the pertinent wild type control (LA4053) that produces fruit with a pointed tip (f). g Fruit from CR-pt $t^{H} / P T^{R}{ }_{\text {pro }}: P T^{R}$ lines (CR-pt $/ P T^{R}{ }_{\text {pro }}: P T^{R}-3$ and CR-pt $\left./ P T^{R}{ }_{\text {pro }}: P T^{R}-5\right)$ and its pertinent control (CR-pt ${ }^{H}$).

Supplementary Fig. 6. Percentage of different fruit morphology produced by different transgenic lines and their pertinent wild-type plants.
a Percentage of pointed tip fruits from plants harboring $P T^{R}$ and $P T^{H}$ alleles from the F2:3 population. b, c Percentage of oval fruits from $P T^{H}$-overexpressing lines $\left(P T^{H}-\mathrm{OE}-5, P T^{H}-\mathrm{OE}-7\right.$, and $\left.P T^{H}-\mathrm{OE}-8\right)$ and pertinent wild-type (TS-9, $P T^{H}$ allele, \mathbf{b}), $P T^{H}$-overexpressing lines $\left(P T^{H}\right.$-OE-2, $P T^{H}$-OE-3, and $P T^{H}$-OE-5) and pertinent wild-type (TS-3, $P T^{R}$ allele, c). d-f Percentage of pointed tip fruits from CR-pt ${ }^{H}$ mutants (CR-pt ${ }^{H}-1, \mathrm{CR}-p t^{H}-4$, and CR-pt $t^{H}-10$) and pertinent wild type control (TS-9, d), CR-pt t^{R} mutants (CR $-p t^{R}-3, \mathrm{CR}-p t^{R}-5$, and $\left.\mathrm{CR}-p t^{R}-6\right)$ and its pertinent wild type control (TS-3, e), CR-pt mutants (CR-pt $t^{R}-1, \mathrm{CR}-p t^{R}-4$, and CR-pt $t^{R}-7$) and the pertinent wild type control (LA4053, f). g Percentage of pointed tip fruits from CR-pt ${ }^{H} / P T^{R}{ }_{\text {pro }}: P T^{R}$ lines (CR-pt $t^{H} / P T^{R}{ }_{\mathrm{pro}}: P T^{R}-3$ and $\mathrm{CR}-p t^{H} / P T^{R}{ }_{\mathrm{pro}}: P T^{R}-5$) and its pertinent control (CR-pt t^{H}. 20 fruits from each replicate were harvested and recorded for the morphologies (pointed tip, non-pointed tip or oval). Error bars indicate mean \pm SE. $n=$ three biological replicates. Statistically significant differences were determined using a two-tailed t test (a) and one-way ANOVA with Tukey's post-hoc test (b-g). Different letters indicate statistically significant differences ($P<0.05$). Source data are provided as a Source Data file.

Supplementary Fig. 7. GO enrichment analysis of differentially expressed genes in the CR-pt t^{H} and wild-type TS-9 lines.

Supplementary Fig. 8. Fruit phenotypes of FUL2 overexpression lines (FUL2-OE) and the wild-type control (TS-9).

Supplementary Fig. 9. Percentage of pointed tip fruit produced by different mutants and wild-type TS-9.
20 fruits from each replicate were harvested and recorded for the morphologies (pointed tip or non-pointed tip). Error bars indicate mean \pm SE. $n=$ three biological replicates. Statistically significant differences were determined using a one-way ANOVA with Tukey's post-hoc test. Different letters indicate statistically significant differences $(P<0.05)$. Source data are provided as a Source Data file.

b

Supplementary Fig. 10. Auxin content of pointed tips in CR-pt \boldsymbol{t}^{R} and wild-type TS-3 lines.
Indole-3-acetic acid (IAA, a), indole-3-carboxaldehyde (ICA, b) and methyl indole-3-acetate (ME-IAA, c) content in the distal end of fruit from CR-pt ${ }^{R}$ and wild-type (TS-3, $P T^{R}$ allele) were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The fruit was harvested at 14 DPA. Error bars indicate mean \pm SE. $n=$ three biological replicates. Statistically significant differences were determined using a one-way ANOVA with Tukey's post-hoc test. Different letters indicate statistically significant differences $(P<0.05)$. Source data are provided as a Source Data file.

Supplementary Table 1. List of primers used for genotyping individuals from the

F2:3 population.

Marker type	Maker name	Enzyme	Annealing temp $\left({ }^{\circ} \mathrm{C}\right)$	Primer sequence(5'-3')	
CAPS	BK2	Bsp119I	55	F	TTTTATTGGTCCACGAGCCG
				R	AAAAATCTATGTCCAAACGAGCC
CAPS	BK72	SspI	55	F	TATTATGTTGCTGAGCAAAAGGC
				R	TTGTGGGGTTAAAGTGGAGAAGT
CAPS	CK9	NcoI	55	F	AGCTTGACTTGGTGATAGAGACC
				R	GGCGTTCTGTGCTGAAAACA
CAPS	CK20	SacI	55	F	CCGAAGAGCTTGCTCCTGTA
				R	AGGGCGGGAAAACTTGTCTT
CAPS	EK6	PstI	55	F	CGAGACCACGTGCTTAACCA
				R	CCAGTGCCTTTGTGTTTGCC
CAPS	EK12	$V s p I$	55	F	TCACCGTTACCAATTTCACCAT
				R	GCTCTTAGTTCCTACATCTCCAAGTT

